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Abstract

The boundary layer flow on a linearly moving permeable vertical surface is studied when the buoyancy force assists

or opposes the flow. Similarity and local similarity solutions are obtained for the boundary layer equations subject to

power law temperature and velocity variation. The effect of various governing parameters, such as Prandtl number Pr,

injection parameter d, and the mixed convection parameter k ¼ Grx=Re2x , which determine the velocity and temperature

distributions, the heat transfer coefficient, and the shear stress at the surface are studied. The heat transfer coefficient

increases as k assisting the flow for all d for uniformly or linearly heated surface and as Pr increases it becomes almost

independent of k. However, as the temperature inversely proportional to the distance up the surface, the buoyancy has

no effects on the heat transfer coefficient. Critical buoyancy parameter values are obtained for vanished shear stress and

for predominate natural convection. Critical values are also presented for predominate buoyancy shear stress at the

surface for assisting or opposing flow. A closed form analytical solution is also presented as a special case of the energy

equation. � 2002 Published by Elsevier Science Ltd.

1. Introduction

A continuously moving surface through an otherwise

quiescent medium has many applications in manufac-

turing processes. Such processes are hot rolling, wire

drawing, spinning of filaments, metal extrusion, crystal

growing, continuous casting, glass fiber production, and

paper production [1–3]. The study of heat transfer and

the flow field is necessary for determining the quality of

the final products of such processes as explained by

Karwe and Jaluria [4,5].

Since the pioneer study of Sakiadis [6] who developed

a numerical solution for the boundary layer flow field

of a stretched surface, many authors have attacked

this problem to study the hydrodynamic and thermal

boundary layers due to a moving surface [7–16].

Suction or injection of a stretched surface was in-

troduced by Erickson et al. [17] and Fox et al. [18] for

uniform surface velocity and temperature and by Gupta

and Gupta [19] for linearly moving surface. Chen and

Char [20] have studied the suction and injection on a

linearly moving plate subject to uniform wall tempera-

ture and heat flux and the more general case using a

power law velocity and temperature distribution at the

surface was studied by Ali [21]. Recently, Magyari et al.

[22] have reported analytical and computational solu-

tions when the surface moves with rapidly decreasing

velocities using the self-similar method, and the flow

part of the problem was considered analytically by

Magyari and Keller [23] for permeable surface moving

with a decreasing velocity for velocity parameters �1/3

and �1/2.

In all papers cited earlier the effect of buoyancy force

was neglected and the following papers have taken the

buoyancy force into consideration however, suction or

injection at the moving surface was relaxed. Such papers

are Lin et al. [24] for horizontal isothermal plate moving

in parallel or reversibly to a free stream. Also the papers
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by Karwe and Jaluria [4,5], Kang and Jaluria [25,26] to

obtain the buoyancy effects on moving plate in rolling

and extrusion processes, in materials processing, casting

process, and in channel flow for thermal processing re-

spectively, and it was found that the effect of thermal

buoyancy is more significant when the plate is moving

vertically upward than when it is moving horizontally.

Ingham [27] studied the existence of the solutions of the

boundary layer equations of a uniformly moving vertical

plate with temperature inversely proportional to the

distance up the plate. Laminar mixed convection of uni-

formly moving vertical surface for different temperature

boundary conditions are considered by Ali and Al-

Yousef [28,29].

The present paper investigates the effect of mixed

convection boundary layer adjacent to a continuously

moving upward vertical surface with suction or injection

at the surface for general boundary conditions of power

law velocity and temperature distributions. However,

the analyses are focused on the case of linearly moving

surface with various temperature boundary conditions

for different Prandtl numbers.

The mathematical formulation of the problem is

presented in Section 2, followed by the analytical solu-

tions in Section 3. Numerical solution procedure is

presented in Section 4 and results and discussion are

reported in Section 5 and finally conclusions are given

in Section 6.

2. Mathematical analysis

Consider the steady two-dimensional motions of

mixed convection boundary layer flow from a vertically

moving upward surface with suction or injection at the

surface. For incompressible viscous fluid environment

with constant properties using Boussinesq approxima-

tion, the equations governing this convective flow are

ou
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¼ 0 ð1Þ

u
ou
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ou
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subject to the following boundary conditions:

u ¼ uw ¼ U0xm; v ¼ vwðxÞ @ y ¼ 0
T � T1 ¼ Tw � T ¼ Cxn @ y ¼ 0
u ! 0; T ! T1 @ y ! 1

ð4Þ

It should be mentioned that, positive or negative m in-

dicate that the surface is accelerated or decelerated from

the extruded slit respectively. The x coordinate is mea-

sured along the moving upward surface from the point

where the surface originates, and the y coordinate is

measured normal to it (Fig. 1). Positive or negative v

imply injection or suction at the surface respectively, and

u and v are the velocity components in x and y directions

respectively. Similarity solutions arise when

u ¼ U0xmf 0ðgÞ; T � T1 ¼ CxnhðgÞ ð5Þ
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where f 0 and h are the dimensionless velocity and tem-

perature respectively, and g is the similarity variable.

Substitution in the governing equations gives rise to the

following two-point boundary-value problem.

f 000 þ ff 00 � 2m
mþ 1

f 02 þ 2kh
mþ 1

¼ 0 ð8Þ

h00 þ Pr f h0
�

� 2n
mþ 1

f 0h

�
¼ 0 ð9Þ

The last term in Eq. (8) is due to the buoyancy force and

k ¼ Grx=Re2x which serves as the buoyancy parameter,

when k ¼ 0 the governing equations reduce to those of

forced convection limit Ali [12,21]. On the other hand, if

k is of a significantly greater order of magnitude than

one, the buoyancy force effects will predominate and the

flow will essentially be free convective. Hence, combined

convective flow exists when k ¼ Oð1Þ. A consideration

of Eq. (8) shows that k is a function of x. Therefore, the

Fig. 1. Schematic of boundary layers induced close to a verti-

cally moving surface.
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necessary and sufficient condition for the similarity so-

lutions to exist is that n ¼ 2m� 1 for f and h be ex-

pressed as functions of g alone. Furthermore, if the

above condition is not satisfied, local similarity solutions

are obtained (see [30,31]). In this paper similarity solu-

tions are obtained for m ¼ n ¼ 1 and local similarity

solutions are also found for m ¼ 1 at n ¼ �1 and 0.

f 0ð0Þ ¼ 1; f ð0Þ ¼ �vw

ffiffiffiffiffiffiffiffiffi
x1�m

mU0

s ffiffiffiffiffiffiffiffiffiffiffiffi
2

mþ 1

r
;

f 0ð1Þ ! 0 ð10Þ

hð0Þ ¼ 1; hð1Þ ! 0 ð11Þ

In driving the second of the boundary conditions (10)

the horizontal injection or suction speed vw must be a

function of the distance (for m 6¼ 1) from the leading

edge. Consequently, vw can be rewritten as

vw ¼ duwRe�1=2 or d ¼ vw
uw

Re1=2 ð12Þ

in order to have a similarity solution in which the

mathematical solution contains g alone. It should be

mentioned that, vw must be of order of magnitude of

uwRe�1=2
x [32], where Rex ¼ uwx=m, in order to insure that

a flow with suction or blowing at the surface satisfies the

boundary layer assumptions. Therefore, d that is intro-

duced, as a blowing or suction parameter must be of

order one [33]. The second of the boundary conditions

(10) can be written as

f ð0Þ ¼ �d

ffiffiffiffiffiffiffiffiffiffiffiffi
2

mþ 1

r
ð13Þ

Eq. (12) shows that, suction or blowing parameter d is

used to control the strength and direction of the normal

flow at the boundary. Therefore, for positive or negative

d we have a blowing or suction boundary condition re-

spectively. Eqs. (8) and (9) reduce to Eqs. (12) and (13)

in [27] for m ¼ 0, and n ¼ �1. Expression for shear

stress can be developed from the similarity solution in

the form

s ¼ lU0xm�1

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

r
Re1=2f 00ðgÞ ð14Þ

The shear stress can be expressed in a dimensionless

form of the skin friction coefficient as

Cf ¼
s

0:5qu2ðxÞ ¼
2f 00ðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðmþ 1Þ

p
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or Cf
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p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðmþ 1Þ

p
ð15Þ

Eq. (15) describes the skin friction coefficient distribu-

tion in the boundary layer and its particular value

0:5Cf

ffiffiffiffiffiffiffi
Rex

p
¼ f 00ð0Þ for m ¼ 1 presents the value on the

moving surface. The local heat transfer coefficient h can

be expressed in dimensionless form of Nusselt number as

Nuxffiffiffiffiffiffiffi
Rex

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

r
h0ð0Þ ð16Þ

and for m ¼ 1 it is given by Nux=
ffiffiffiffiffiffiffi
Rex

p
¼ �h0ð0Þ.

3. Analytical solution

The heat transfer part of the problem presented by

Eq. (9) exhibit an exact closed form solution in terms of

g corresponding to special value of the temperature ex-

ponent n such that

2n ¼ �ðmþ 1Þ; m > �1 ð17Þ

The energy equation (9) for this particular case leads to

h00 þ Prðf h0 þ f 0hÞ ¼ 0 ð18Þ

Having in mind the boundary conditions first and third

of (10), (11) and (13) one can obtain for any Pr

h0ð0Þ ¼ �Pr f ð0Þ ¼ Pr d

ffiffiffiffiffiffiffiffiffiffiffiffi
2

mþ 1

r
and

Nuxffiffiffiffiffiffiffi
Rex

p ¼ �Pr d ð19Þ

The wall curvature h00ð0Þ of the temperature profile can

be obtained from Eq. (9) with the parameter values (17)

taking into account Eq. (19) by the following simple

expression

h00ð0Þ ¼ Pr
2

mþ 1
Pr d2

�
� 1

�
¼ �Pr þ ½h0ð0Þ�2 ð20Þ

Eqs. (19) and (20) show that, for any specific value of d,

expressed in terms of Pr, the curvature is Prandtl num-

ber dependent only for fixed values of m and n given by

Eq. (17). These analytical results have been confirmed

for m ¼ 1 and n ¼ �1 by detailed numerical calcula-

tions that will be discussed in Section 5. It should be

mentioned that, Similar analytical solutions have been

found by Magyari and Keller [23] for m ¼ �1=3, �1=2,
and 1 and by Gupta and Gupta [19] for m ¼ 1 for no

buoyancy force. Recently, some exact analytical solu-

tions have developed by Magyari et al. [22] for perme-

able surfaces stretched with rapidly decreasing velocities

(m < �1).

4. Numerical solution procedure

The coupled nonlinear ordinary differential equations

(8) and (9) are solved numerically by using the fourth

order Runge–Kutta method. Solutions of the differential

equations (8) and (9) subject to the boundary condi-

tions first and third of (10) and (11), and the modified

boundary condition (13) were obtained for increasing

values of k at each constant d. At each new d we start

from a known solution of the equations with k ¼ 0
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[12,21] where f 00ð0Þ and h0ð0Þ are known. For a given

value of k the values of f 00ð0Þ and h0ð0Þ were estimated

and the differential equations (8) and (9) were integrated

until the boundary conditions at infinity f 0ðgÞ and hðgÞ
decay exponentially to zero (at least of order 10�4). If

the boundary conditions at infinity are not satisfied then

the numerical routine uses a half interval method to

calculate corrections to the estimated values of f 00ð0Þ
and h0ð0Þ. This process is repeated iteratively until ex-

ponentially decaying solution in f 0 and h are obtained.

The value of g1 was chosen as large as possible de-

pending upon the Prandtl number and the injection

parameter d, without causing numerical oscillations in

the values of f 0, f 00, and h. The same procedure was

repeated for negative k where the buoyancy is in the

opposite direction to the flow and opposes it. The maxi-

mum and minimum k were obtained for different values

of �0:66 d 6 0:6 where the numerical solutions became

more difficult to obtain as k approached kmax or kmin

for the corresponding d. Comparison is made with the

available published data in terms of f 00ð0Þ and h0ð0Þ
which show a good agreement with the present results.

5. Results and discussion

Eqs. (8) and (9) were solved numerically, as described

in Section 4, for m ¼ 1, d ¼ �0:6 to 0.6 with a step of

0.2, Pr ¼ 0:72, 3, 10, and for temperature exponent

n ¼ �1, 0, and 1. Samples of the resulting velocity and

temperature profiles for m ¼ 1, n ¼ �1, d ¼ �0:6, 0.6,
for Pr ¼ 0:72, and for different values of k are presented

in Fig. 2(a) and (b). It can be seen that the presence of

positive buoyancy (assisting flow) results in a relative rise

in the velocity profile near the wall in Fig. 2(a). It is also

clear that, the velocity gradient at the surface increases

from negative value (opposing flow) passing by that at

zero buoyancy force (k ¼ 0) to a positive value (assisting

flow). The specific critical values of k ¼ kðcrt:Þs ¼ 2:2695,
1.0815 in Fig. 2(a) are for zero velocity gradient where

the surface shear stresses are vanished. Table 1 shows

these critical values for various values of d and for

n ¼ �1, 0, and 1. Furthermore, as k increases, the ve-

locity gradient at the wall for both injection and suction

are almost identical which means the flow is predomi-

nated by the buoyancy effects. It should be noted that,

the hydrodynamic boundary layer thickness in Fig. 2(a)

is smaller for d ¼ �0:6 than for d ¼ 0:6 since the earlier

is for suction while the later is for injection.

Fig. 2(b) shows the temperature profiles for the same

parameters used in Fig. 2(a). It is clear that as k increases

the thermal boundary layer thickness decreases however,

the temperature gradient at the surface is unchanged by

changing k either for suction or injection, resulting in a

constant heat transfer rate corresponding to each d in-

dependent of k. This special case is proved analytically

in Section 3 for m ¼ 1, n ¼ �1 and for any Prandtl

number and it is confirmed here in Fig. 3(a) where the

dimensionless NuxRe�1=2
x is independent of k but it is only

function of the suction/injection parameter d. Similar

results are obtained for the other Prandtl numbers.

Local Nusselt number distributions for d ¼ �0:6 and

0.6 and for different values of Prandtl numbers are

shown in Fig 3(b). In this figure, it is cleat that NuxRe�1=2
x

is independent of k and its negative value means that

heat is transferred from the ambient medium to the

surface. Furthermore, increasing Prandtl number en-

hances the heat transfer coefficient for the suction case

Fig. 2. Samples of velocity and temperature profiles for Pr ¼
0:72, n ¼ �1 and m ¼ 1 showing the buoyancy effects: (a) ve-

locity, (b) temperature.
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but reduces it for the blowing one. It worth mentioning

that, the numerical solution for this case can be obtained

for any values of k.

Velocity and temperature profiles for uniform surface

temperature (n ¼ 0), Pr ¼ 3:0, d ¼ �0:6 and 0.6 and for

various values of k are shown in Fig. 4(a) and (b). These

profiles are similar to those for Pr ¼ 0:72 however, the

velocities overshoot are moderate at the corresponding

maximum k. For examples: at d ¼ �0:6 the maximum k
is 500 (not shown) and the velocity overshoot is 480%

however, for d ¼ 0:6 the maximum k is 150 with over-

shoot of 350%. The corresponding values of kðcrt:Þs where

the shear stress is zero are 5.5225 at d ¼ �0:6 and 1.8

at d ¼ 0:6 (see Table 1 for other d). Fig. 4(b) show the

temperature profiles for the same parameters given in

Fig. 4(a). In this figure as k increases the thermal bound-

ary layer thickness decreases and the temperature gra-

dient at the surface decreases (in contrast to the previous

case of n ¼ �1 in Fig. 2(b)) hence, the heat transfer rate

is enhanced as k increases for both suction and injec-

tion. Furthermore, the suction temperature profiles are

squeezed together with reduced thermal boundary layer

thickness than that for injection therefore, suction en-

hances the heat transfer coefficient from the stretched

surface than injection.

Fig. 5(a) and (b) shows the velocity and temperature

profiles at k ¼ 25, m ¼ 1, and d ¼ �0:6 for different

Prandtl numbers and temperature exponents. These fig-

ures indicate that increasing Pr and n reduce the hy-

drodynamic and thermal boundary layers that in turn

reduce the shear stress and increase the heat transfer

coefficient at the surface respectively.

The local Nusselt number distribution for different

values of d, for Pr ¼ 0:72 is shown in Fig. 6 for the entire

mixed convection regime in terms of NuxRe�1=2
x versus k

on a logarithmic scale for m ¼ 1 and n ¼ 0. The right

hand side of the figure presents positive k on the x-axis

where buoyancy assisting flow however, the left side

presents the negative k where buoyancy opposing flow.

It is clear from this figure that the heat transfer coeffi-

cient increases as d decreases in other words that, suc-

tion enhances the heat transfer coefficient while injection

reduces it comparing to the impermeable surface (d ¼ 0)

for fixed k. Furthermore, as k increases the heat transfer

Fig. 3. Local Nusselt number distribution for m ¼ 1 and

n ¼ �1 showing the independence of k: (a) Pr ¼ 0:72, (b)

comparison of Prandtl numbers.

Table 1

Critical values of buoyancy parameter kðcrt:Þs corresponding to vanished shear stresses at the surface at n ¼ �1, 0, and 1, for Pr ¼ 0:72,

3, and 10.0, and for various values of d

d n ¼ �1 n ¼ 0 n ¼ 1

Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10 Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10 Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10

�0.6 2.2695 4.745 11.00 2.6735 5.5225 12.235 3.011 6.2075 13.335

�0.4 1.994 3.7625 7.909 2.3964 4.5536 9.217 2.7250 5.2069 10.339

�0.2 1.7535 2.938 5.385 2.1560 3.742 6.782 2.4743 4.397 7.9374

0.0 1.545 2.256 3.4025 1.9581 3.07658 4.892 2.264 3.7238 –

0.2 1.3665 1.700 1.9375 1.7807 2.542 3.5065 2.078 3.14465 –

0.4 1.2125 1.2585 0.9585 1.630 2.1252 2.550 1.912 2.698 –

0.6 1.0815 0.912 0.3955 1.505 1.798 1.947 1.7735 – –
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coefficient increases for fixed d this means, more heat

is transferred from the surface to the medium and

this quantity of heat is larger for suction than injection

at fixed k. However, at k > 1000 where the buoy-

ancy dominates there are no significant differences in

NuxRe�1=2
x for various values of d and it almost k de-

pendent only then, the flow is essentially be free con-

vective (k 
 Oð1Þ). Moreover, to see the region of

predominate natural convection for buoyancy assisting

flow, a 5% increase in Nusselt number of that of forced

convection limit has been applied. The corresponding

values of k (which we call it critical values kðcrt:Þc) are

tabulated in Table 2 for each d. These critical values are

presented as solid circles and connected by a dashed line

in the figure. Therefore, the region on the right of the

dashed line presents the region of natural convection

dominates whereas the region on the left presents the

domain of forced convection. It should be mentioned

that, the entire solutions are presented in this figure

however, more solutions can be obtained with buoyancy

assisting or opposing flow with lower accuracy and have

been rejected.

The distributions of NuxRe�1=2
x for n ¼ 0, for three

values of Pr (0.72, 3, and 10), and for d 6 0 are presented

in Fig. 7(a). In this figure the upper solid lines are for

Pr ¼ 10, and the lower solid lines are for Pr ¼ 0:72 and

the dashed lines are for Pr ¼ 3. This figure indicates that,

Fig. 4. Samples of velocity and temperature profiles for Pr ¼ 3,

n ¼ 0, and m ¼ 1 showing the buoyancy effects: (a) velocity, (b)

temperature.

Fig. 5. The effect of Prandtl number and the temperature ex-

ponent n for m ¼ 1, d ¼ �0:6 and for k ¼ 25: (a) velocity, (b)

temperature.
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for the suction case increasing Pr enhances the heat

transfer coefficient since the boundary layer thickness

getting smaller and the temperature gradient at the wall

getting steeper. Fig. 7(b) shows NuxRe�1=2
x distributions

for d > 0 (blowing), for Pr ¼ 0:72, 3 and 10, and for

n ¼ 0. In this figure as in Fig. 7(a) increasing Pr enhance

the heat transfer coefficient however, this enhancement

depend on d and Pr. For d ¼ 0:2 the effect of increasing

Pr is clear but for d > 0:2, there is a competition be-

tween the injected fluid and the heat transfer for each Pr.

The injected fluid increases the boundary layer thickness

and the temperature gradient at the wall and make it

more flatter and hence reduce the heat transfer. The

reduction of NuxRe�1=2
x with increasing Pr is more sig-

nificant for d > 0:2.
Fig. 7. Local Nusselt number distributions showing the effect

of Prandtl number and k for n ¼ 0: (a) d6 0, (b) d > 0.

Table 2

Critical values of buoyancy assisting flow kðcrt:Þc for predominate natural convection at n ¼ 0 and 1, for Pr ¼ 0:72, 3, and 10.0, and for

various values of d

d n ¼ 0 n ¼ 1

Pr ¼ 0:72 Pr ¼ 3:0 Pr ¼ 10:0 Pr ¼ 0:72 Pr ¼ 3:0 Pr ¼ 10:0

�0.6 0.480 8.200 85.00 0.500 6.30 –

�0.4 0.285 4.000 37.00 0.450 5.10 –

�0.2 0.225 2.430 10.00 0.400 2.49 –

0.0 0.150 1.540 4.750 0.320 2.43 –

0.2 0.100 0.473 1.250 0.255 2.15 –

0.4 0.085 0.165 0.450 0.220 1.40 –

0.6 0.0325 0.124 0.150 0.153 1.32 –

Fig. 6. Local Nusselt number distribution for the entire mixed

convection at n ¼ 0 for Pr ¼ 0:72. Dashed line presents the

locus separating the natural convection dominant region on the

right and the forced convection region on the left.
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The effect of linearly increasing surface temperature

(n ¼ 1) is shown in Fig. 8 for Pr ¼ 0:72 for the same

parameter as in Fig. 6(a). The right dashed line separates

the region of predominate natural convection on the

right and the region of forced convection dominates on

the left for buoyancy assisting flow. The left dashed line

connecting the points of 5% decrease in NuxRe�1=2
x

in order to obtain kðcrt:Þc for buoyancy opposing flow. It

should be noted that, critical points for d 6 0 cannot be

obtained with reasonable accuracy and are not included

in the figure. Table 3 shows the critical values kðcrt:Þc for

buoyancy opposing flow for other Prandtl numbers for

different d and n.

Fig. 9 presents the distributions of NuxRe�1=2
x for

various Prandtl numbers and d for n ¼ 1. In this figure

increasing Pr for fixed d and for any k enhances the heat

transfer coefficient and for specific Pr suction always

enhances the heat transfer whereas, blowing reduces it.

Furthermore, the effect of buoyancy is significant for

Pr ¼ 0:72 (air) due to the lower density of air that makes

it more sensitive to the buoyancy forces.

The dimensionless shear stress at the surface pre-

sented by f 00ð0Þ for assisting or opposing flow for n ¼ 0

and for Pr ¼ 0:72 is shown in Fig. 10. A 5% increase or

decrease in f 00ð0Þ at k ¼ 0 has been applied for buoyancy

assisting or opposing flow respectively. The two solid

lines connecting circles and squares present those values

of 5% increase or decrease respectively. The predomi-

nate buoyancy effect region is on the right of these two

lines. The numerical values of k which we call it kðcrt:Þsh
corresponding to these points are given in Tables 4 and 5

for different parameters and for buoyancy assisting or

opposing flow respectively. It worth noted that, at large

k where buoyancy dominated there are no significant

Table 3

Critical values of buoyancy opposing flow kðcrt:Þc for predominate natural convection at n ¼ 0 and 1, for Pr ¼ 0:72, 3, and 10.0, and for

various values of d

d n ¼ 0 n ¼ 1

Pr ¼ 0:72 Pr ¼ 3:0 Pr ¼ 10:0 Pr ¼ 0:72 Pr ¼ 3:0 Pr ¼ 10:0

�0.6 – �4.187 �43.4 – �4.12 �37.0

�0.4 – �2.527 �20.4 – �2.83 �19.7

�0.2 – �1.47 �8.6 – �1.93 �10.2

0.0 – �0.81 �3.17 – �1.31 �5.2

0.2 – �0.42 �1.03 �0.27 �1.01 �2.4

0.4 – �0.21 �0.35 �0.25 �0.72 �1.6

0.6 – �0.11 �0.107 �0.25 �0.60 –

Fig. 9. Local Nusselt number distributions showing the effect

of Prandtl number, d and k for n ¼ 1.

Fig. 8. Local Nusselt number distribution for the entire mixed

convection for Pr ¼ 0:72 and n ¼ 1. The dashed lines present

the predominate natural convection for assisting flow (right)

and for opposing flow (left).
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differences in f 00ð0Þ for various values of d and it turns

out that f 00ð0Þ is k dependent only. Similar curves are

obtained for n ¼ �1 and 1 and for other Prandtl num-

bers.

6. Conclusions

Heat transfer and flow field characteristics of a lin-

early moving vertical permeable surface are studied

when buoyancy assisting or opposing flow.

The results show that as k increases (assisting flow)

the hydrodynamic and thermal boundary layers thick-

ness decrease however, for opposing flow (k < 0) they

increase. On the other hand, for uniformly or linearly

heated surface (n ¼ 0, 1) increasing k enhances the heat

transfer coefficient for all d for Pr ¼ 0:72 and 3 but

almost has no effect for Pr ¼ 10. However, for inversely

proportional surface temperature (n ¼ �1) the heat

transfer coefficient is independent of k and is suction/

injection parameter dependent only for fixed Prandtl

number and n. Furthermore, in all cases suction

always enhances the heat transfer coefficient over that of

blowing for fixed k. Critical values of buoyancy pa-

rameter are obtained for both zero shear stress at the

surface and for predominate natural convection for as-

sisting or opposing flow.

At large k the dimensionless shear stress at the wall is

k dependent only. Critical values of k corresponding to

predominate buoyancy effects on the dimensionless

shear stress for assisting or opposing flow are tabulated

for different parameters.

Finally, a closed form analytical solution is obtained

for the special case of 2n ¼ �ðmþ 1Þ and it is con-

firmed computationally for n ¼ �1 and m ¼ 1 where the

Table 4

Critical values of kðcrt:Þsh for buoyancy assisting flow for predominate buoyancy shear stress at the surface for n ¼ �1, 0, and 1, for

Pr ¼ 0:72, 3, and 10.0, and for various values of d

d n ¼ �1 n ¼ 0 n ¼ 1

Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10 Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10 Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10

�0.6 0.091 0.2250 0.545 0.104 0.260 0.600 0.116 0.290 0.650

�0.4 0.080 0.1760 0.389 0.092 0.210 0.500 0.105 0.238 0.500

�0.2 0.069 0.1350 0.262 0.084 0.170 0.330 0.096 0.199 0.380

0.0 0.060 0.1010 0.163 0.075 0.137 0.230 0.088 0.168 0.284

0.2 0.054 0.0750 0.089 0.070 0.110 0.160 0.080 0.140 0.215

0.4 0.048 0.0530 0.040 0.065 0.091 0.110 0.077 0.120 0.165

0.6 0.042 0.0356 0.013 0.060 0.077 0.085 0.072 0.103 0.130

Table 5

Critical values of kðcrt:Þsh for buoyancy opposing flow for predominates buoyancy shear stress at the surface for n ¼ �1, 0, and 1, for

Pr ¼ 0:72, 3, and 10.0, and for various values of d

d n ¼ �1 n ¼ 0 n ¼ 1

Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10 Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10 Pr ¼ 0:72 Pr ¼ 3 Pr ¼ 10

�0.6 �0.090 �0.223 �0.539 �0.100 �0.255 �0.600 �0.112 �0.285 �0.650

�0.4 �0.077 �0.174 �0.382 �0.089 �0.205 �0.500 �0.098 �0.237 �0.500

�0.2 �0.068 �0.134 �0.256 �0.080 �0.168 �0.330 �0.091 �0.199 �0.380

0.0 �0.060 �0.0998 �0.156 �0.072 �0.135 �0.230 �0.084 �0.160 �0.284

0.2 �.0535 �0.072 �0.083 �0.067 �0.108 �0.160 �0.077 �0.138 �0.211

0.4 �.0479 �0.050 �0.0355 �0.061 �0.087 �0.110 �0.072 �0.116 �0.155

0.6 �0.044 �0.033 �0.011 �0.057 �0.073 �0.083 �0.070 �0.103 �0.120

Fig. 10. Dimensionless shear stress distributions at the surface

for assisting flow (––) and for opposing flow (– – –). Lines

connecting solid circles and squares indicate the predominate

buoyancy shear stress for assisting and opposing flow respec-

tively.
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temperature inversely proportional to the distance up

the surface.
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